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Stress distribution in discontinuous fibres 
in a model composite 

S H O J I R O  O C H I A I ,  M A S A K I  HOJO 
Mesoscopic Materials Research Center, Faculty of Engineering, Kyoto University, Kyoto 606, 
Japan 

In order to calculate stress distribution in unidirectional discontinuous fibres embedded in a metal 
matrix, a method based on the shear-lag analysis was proposed. Using this method, the influence 
of fibre length, interfacial bonding strength, distance between fibre ends in the longitudinal 
direction, and applied strain to composite on both stress distribution and average stress of fibres 
was estimated for a number of examples. 

1. In t roduct ion  
When discontinuous fibres are embedded in metal 
matrix composites, the stress in the fibres is built up 
through the shear stress at interface z. Noting the 
distance from the fibre end as x, the stress of fibre as 
~r(X), and the diameter of fibres as d, the relation of 
~f(x) to ~ is given by [1] 

dcyf(x)/dx = (4/d)r (1) 

If ~ is taken as a constant, ~f(x) can be given by 

(Yf (X) ~" (4/d)'cx (2) 

and critical length lc [1], which is a necessary length 
for the fibres to carry the stress equal to their full 
strength ~fu at the centre of the length, is given by 

lc/d = ~fu/(2z) (3) 

Equation 3 has been widely used for analysis of 
strength of discontinuous fibre-reinforced metal 
matrix composites by substituting shear yield stress of 
matrix 22y, or shear strength %, into ~ in the case of 
high interfacial bonding strength. However, according 
to studies on stress distribution in broken fibres in 
originally continuous single-fibre composites with 
high interfacial bonding [2, 3], z is not necessarily 
constant and the stress distribution depends on the 
applied stress (or strain) level, yield stress and strain 
hardening rate of the matrix, and the volume fraction 
of the fibres. In multi-discontinuous-fibre composites, 
the stress distribution will be affected by the above 
factors, and also by the distance between the ends of 
two fibres. Furthermore, it is expected that if inter- 
facial bonding is low, the distribution will be different. 
The aim of the present work is to present a calculation 
method for the stress distribution in multi-discontinu- 
ous fibres embedded in a strain hardenable metal 
matrix, by employing a two-dimensional model com- 
posite with a simple geometry, and to calculate the 
stress distribution for some examples. 

2. Ca lcu la t ion  method  
2.1. Model composite 
In the present attempt to calculate stress distribution, 

a two-dimensional model composite as shown in 
Fig. 1 was employed. In the model, the fibres with 
length l and width df are assumed to be embedded 
regularly in longitudinal rows. The distance between 
fibre ends in each longitudinal row is given by 2a in 
Fig. 1. The fibre rows are described as "1" and "2", 
which exist alternately such that the centre of length in 
the fibres in row 1 exists in the cross-section where the 
centre of fibre ends in row 2 exists, as shown in Fig. 1. 

As the fibres exist regularly in this model, the region 
surrounded by the broken line in Fig. 1 was picked up 
and the equations for stress equalibrium were given 
for this representative region. The centre of the fibres 
in row 2 was taken as x = 0, and the fibre end in row 
1 was given as x = a. 

From the geometry shown in Fig. 1, the width of 
matrix dm for a < x < l /2 was given by 

dm = d f [ l ( l -  Vf) - 2aVf]/EVf(1 + 2a)] (4) 

where Vf is the volume fraction of fibres. 

2.2. A p p r o x i m a t i o n s  
In the present work, shear-lag analysis was employed, 
which has been widely used to calculate stress distri- 
bution in broken and neighbouring fibres in multi- 
continuous fibre composites [4-9] .  The following ap- 
proximations were made for simplicity. 

(i) The composite is composed of tension-carrying 
fibres embedded in a shear-carrying matrix, which 
plays a role only as the stress-transfer medium. This 
approximation is common in shear-lag-analysis 
[4-9] .  

(ii) The stress in the transverse direction is neglect- 
ed. This approximation is also common in shear-lag 
analysis. 

(iii) The shear stress %-shear strain 7 curve of the 
matrix is composed of an elastic region for 3' < 3'y 
where 7y is the yield strain in shear and that of a plastic 
region for 3' > ?y where matrix w0rk-hardens linearly 
with respect to strain. Under this approximation, the 
Zm is given by 

~'m = am') /  (5) 
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Figure I Geometry of the model employed in the present work. 

for y < yy where G,n is the shear modulus of the 
matrix, and 

T m = (1 - 13)~, + ]3Gmy (6) 

for y > yy where ry is the shear yield stress given by 
Gm'~y and [3 is the slope of the shear stress-strain curve 
in the plastic region, normalized with respect to Gm. 

2 .3 .  D e f o r m a t i o n  s t a g e s  
Yielding of the matrix and interfacial debonding can 
occur, dependent on the applied strain e. A schematic 
representation of the occurrence of these events is 
shown in Fig. 2, which represents the region sur- 
rounded by the broken line in Fig. 1. 

When the applied strain e is low, the matrix deforms 
elastically (stage a in Fig. 2a). With increasing applied 
strain, the shear stress at interface z increases and the 
matrix becomes plastic (b) if q > ry where q is the 
interracial bonding strength in shear; or interfacial 
debonding arises if ry > q(c). With further increasing 
strain, the range of plastic deformation (a < x < a + b 
and 1/2 - b < x < 1/2) in (b), or that of interracial 
debonding (a < x < c and I / 2 -  c < x < 1/2) in (c) 
increases, where b and c are lengths of the region 
where matrix behaves plastically and the region where 
interfacial debonding occurs, respectively. 

For stage b, there are two possible stages after 
further straining. If no interracial debonding occurs, 
stage b reaches I /2(d) ,  but if debonding occurs before 
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Figure 2 Schematic representation of deformation stages. D, N and [] shown in the matrix areas refer to the regions where matrix behaves 
elastically, matrix behaves plastically and interfacial debonding occurs, respectively. 

2755  



stage b reaches l/2, stage e arises. Once stage c has 
occurred, the region of debonding grows and stage 
c reaches//2(g). When stage d has occurred, the shear 
stress at the interface increases with increasing applied 
strain, and a region of debonding arises (f). When 
stage e has occurred, the regions of plastic matrix and 
interfacial debonding grow and the region of elastic 
matrix disappears upon further straining, resulting in 
stage f. When stage f has occurred, the region of 
debonding grows with increasing strain and the region 
of plastic matrix disappears (stage g). 

There are seven possible stages as stated above. 
Which stage appears is dependent on the volume 
fraction of the fibre, elastic properties of both fibres 
and matrix, plastic properties of the matrix, interfacial 
bonding strength, and fracture strain of composites. 
For instance, if the interfacial bonding strength is high 
enough to suppress debonding, only stages a, b and 
d arise. Furthermore, if the composite fractures before 
stage d appear, only stages a and b appear for low and 
high applied strains, respectively. 

2.4. Equations of stress equilibrium 
Here, stage e is taken as an example and equations of 
stress equilibrium are presented, as this stage contains 
all kinds of regions (elastic matrix, plastic matrix and 
interfacial debonding). For simplicity, the regions for 
0 < x < a ,  a < x < a + c ,  a + c < x < a + b + c ,  
a + b + c < x < l / 2 - b - c ,  1 / 2 - b - c < x < l / 2  

- c ,  1/2 - c < x < l/2 and l/2 < x < I/2 + a are 
named as regions A to G, respectively. 

Noting the displacement of the "1" and "2" fibres as 
Ul and u2, respectively, the shear stress r is expressed 
as 

"c = (Gm/dm)(U 1 - u2) (7) 

when the matrix behaves elastically, and it is expressed 
as 

= (1 - [~)ry + (~3am/dm)(U 1 --  U2) (8) 

when the matrix behaves plastically. When interracial 
debonding has occurred, z is given by 

= ~f (9) 

where ~f is the frictional shear stress acting at the 
interface after debonding. In the range of 0 < x < a 
and l /2 < x < l/2 + a, z is given by 

= 0 (10) 

as the u2 of the "2" fibres surrounding the "1" fibres is 
the same. 

Noting the Young's modulus of fibres as El, the 
following equations for stress equilibrium can be given 
for regions A to G. 

regions A and G: 

d f E r ( d 2 u 2 / d x  2) = 0 (11) 

regions B and F: 

dfEr(d2ux/dx 2) = 2~f (12) 

dfEf(dZuz/dx 2) = - 2~f (13) 

regions C and E: 

dfEf(dZul/dX 2) = 2[(1 - [3)-Cy + (~Gm/dm)(U 1 - b/z) ] 

(14) 

d f E f ( d 2 u 2 / d x  2) = - 2 [ (1  - [~)'~y 

- (f3Gm/dm)(Ut - u2)] (15) 

region D: 

d f E f ( d 2 u l / d x  2) = 2 [ (Gm/dm) (Ul  - u2)]  (16) 

d f E f ( d 2 u 2 / d x  2) = - 2 [ (Gm/dm)(U 1 - u2) ] (17) 

2.5. General solutions 
By solving Equations 11 to 
regions A to G are given by 

region A: 

region B: 

region C: 

17, the solutions for 

u A = A1x  + A2 (18) 

u~ = "cfx2/(dfEf) + Bxx + B2 (19) 

uBz - zrx2/(dfEf) + B3x + B4 (20) 

u c =-[dfdmEf/(4~Gm)](C, cosh { [4~Gm/(dfdmEf)]l/2x} 

+ Czsinh{[4~Gm/(dfdmEf)]X/2x})+ C3x + C4 

(21) 
u2 c = [(1 -- ~)dm'ry/(~3Gm)] - [dfdmEf/(4~Gm)] 

x (Ct cos h {[4~3Gm/(dfdmEf)] 1/2x} 

+ C2 [sinh { [4f3Gm/(dfdmEf)] 1/Zx}) 

+ C3x + C4 (22) 

region D: 

tt~ = [d fdmEf / (4Gm)  ](D1 c o s h  { [4Gm/(d fdmEf )  ] 1/2x} 

+ Dzsinh{[4Gm/(dfdmEf)]l /2x})  + D3x + 04 

(23) 

u~ = --  [ dfdmEf/(4Gm) ](D l c o s h  {[ 4Gm/(dfdmEf) ] 1/2x} 

+ D2sinh{[4Gm/(drdmEf)]l/2x}) + D3x + D4 

(24) 

region E: 

u E = [dfdmEf/(4~Gm)] {El cos h [4#Gm/(dfdmEf)] 1/2x} 

+ E2sinh{[4~Gm/(dfdmEf)]l/2x} + E3x + E4 

(25) 

u E = [(1 - [3)dm'cy/(f3Gm)] - [dfdmEf/(4f3Gm)] 

• (E~ cosh {[4~Gm/(dfdmEf)]l/2x} 

+ E2sinh{ [4~Gm/(dfdmEf)]'/2x}) 

+ E3x + E4 (26) 

region F: 

uVx = "cfx2/(dfEf) + F i x  + F2 (27) 

U~ = -- '~rX2/(dfEf) + F 3 x  4- F 4 (28) 
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region G: 

UOl = G I X  "4- G 2 (29) 

The superscripts A to G of ui refer to regions A to G, 
respectively. 

(6) At x = a + c and 1/2 - c, interfacial debonding 
o c c u r s .  

's = (1 - -  13)ry -}- ~Gm[Ucl(a + c) - -  uC(a + c)]/dm 

(51) 

The condit ion that  

2 .6 .  B o u n d a r y  c o n d i t i o n s  
The bounda ry  condit ions to solve the integral con- 
stants Ai and Gdi = 1 and 2), B~, Ci, D~, Ei and Fi 
(i = 1 to 4), and the lengths b and c (total 26 unknown 
values) are given as follows. 

(1) At any cross-section, the applied load is con- 
stant. 

duA/dx  = duS/dx  + duB/dx (30) 

du~/dx  + du~./dx = duC/dx + duC/dx (31) 

duC/dx + duC/dx = duD/dx + duD/dx (32) 

duD/dx + duD/dx = duE1/dx + du~/dx (33) 

du~/dx  + du~/dx = duF/dx + duV/dx (34) 

duF/dx + du~/dx = du~ /dx  (35) 

(2) F r o m  the geomet ry  of the present model, the 
stress in "1" fibres at x = z (z: arbi t rary  value less than 
1/4 + a/2) is equal to the stress in "2" fibres at 
x = I/2 + a -  z. 

(du~/dx)z = (duV/dx),/2+,_~ (36) 

(duC1/dX)z = (duE2/dX)l/2+az (37) 

( d u D / d x ) z  = (du~/dx)q2+a-~ ( 3 8 )  

F r o m  Equat ions  30 to 38, the condit ions that  

(MuEI/dX)z = (duC /dx) l /2  +a - z  

(duUdx)~ = (du~/dx),/~ +._= 

(dU~l /dX)= = (du~ /dx)q2 +.-= 

are satisfied automatical ly.  
(3) At any x, the displacement  should be continu- 

OUS.  

u~(a + c) = uC(a + c) (39) 

uC(a + b + c) = uD(a + b + c) (40) 

uD(I/2--  b -- c) = u ~ ( I / Z -  b - c) (41) 

uE(l/2 -- c) = uV(I/2 -- c) (42) 

uV(I/2) = @(1/2) (43) 

u}(a) = u~(a) (44) 

u~(a + c) = uC(a + c) (45) 

uC(a + b + c) = uI~(a + b + c) (46) 

u~(I/2 - b -- c) = uE(I/2 -- b - c) (47) 

uE(I/2 -- c) = uF(l/2 - c) (48) 

(4) At x = 0, the displacement  of "2" fibres is zero. 

U2A(0) = 0 (49) 

(5) The applied strain, e, is related to 

e = u~(l /2 + a)/(l /2 + a) (50) 

'~i ~-- (1 "W" 13)Ty -t" 13Gm[blE(l/2 - -  C) - -  u~(l/2 - c ) ] / d m  

is satisfied automat ica l ly  from condit ions 1 and 2 and 
Equat ion 51. 

(7) At x = a + b + c  and l / 2 - b - c ,  yielding of 
matr ix  in shear occurs. 

T.y = am[uD(a  + b + c) - uD(a + b + c)]/dm 

(52) 

The condit ion that  

gjy = Gm[uD(I/2 -- b - c ) -  uD(l/2 -- b - c)] /d  m 

is satisfied automat ica l ly  from condit ions 1 and 2, and 
Equat ion 52. 

(8) At x = a, the stress of "2" is zero. 

(du~/dx)o = 0 (53) 

(9) At any x, the stress in fibres should be continu- 
ous. 

(du~/dx)a+c = (duC/dx),+c (54) 

(du~/dx).+b+c = (du~/&)o+b+c (55) 

The condit ions that  the stress in " l "  is cont inuous at 
x = I / 2 -  b - c, 1/2 - c, and I/2 + a, and that  the 
stress in "2" is cont inuous at x = a, a + c, a + b + c, 
1 / 2 -  b -  c and l / 2 -  c, are satisfied automat ica l ly  
from condit ions 1 and 2 and Equat ions  54 and 55. 

In the calculation, e was given step by step, the 
unknown values were calculated and then the distrb 
but ion of stress as a function of x, cyf, was calculated 
from Eddul /dX) ,  and the shear stress at interface 
z from Equat ions  7-9. The average stress of fibres, 6-e, 
was calculated from 

l 

(T~f = ( 1 / / ) j  c~fdl (56) 
o 

As stated above,  the stress distr ibution can be cal- 
culated for stage e. For  other stages, it can be cal- 
culated in a similar manner .  

3. Results and discussion 
In the present calculation, the following values were 
used: Ef = 400 GPa ,  G m =  40 GPa ,  ~y = 100 MPa ,  
rf = 20 MPa ,  13 = 0.02, Vf = 0.5, dr = 10 lain, q = 300 
and 120 MPa ,  l = 250 and 500 pro, 2a = 0 to 400 ~tm 
and e = 0 to 2%. 

3.1. Variation of interfacial shear stress 
at f ibre-end as a funct ion of applied 
strain to composi te 

The shear stress was highest at x = a, as will be shown 
in 3.2 below. Fig. 3 s h o w s  some examples of the 
variat ion of r(a) as a function of applied strain e for 
zi = 300 MPa ,  which was high enough to suppress 
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Figure 3 Varia t ions  of interfacial  shear  stress at  x = a, ~(a) as 

a function of s t ra in  of composi te ,  e, for q = 300 M P a  (solid curves) 

and for zl = 120 MPa (broken curve for (2)) for comparison, l = (1) 
500; (2) 500; (3) 500; (4) 250; (5) 250 gm. 2a = (1) 0; (2) 200; (3) 400; 
(4) 0; (5) 200 pm. 

interracial debonding for e < 2%. The values of l and 
2a used for the calculation are given in the capt ion to 
Fig. 3. Two distinct features can be read from Fig. 3. 

(i) The ~(a) increases with increasing e linearly in 
the elastic stage of the matr ix  (stage a), but  when 
e becomes large and plastic deformat ion  of the matr ix  
occurs, it increases with increasing e rather  slowly. 
However ,  the increasing rate of r(a) with respect to 
e in the plastic stage of the matr ix  becomes high at 
high e due to s t rain-hardening of the matrix.  

(ii) When  2a is small ((1) and (2)) in Fig. 3, the 
increase in z(a) in the plastic stage of matr ix  is low, 
while when 2a is large in compar i son  with l ((3) and 
(5)), it is high: namely in the case of large 2all, the 
interracial shear stress at x = a becomes very high, 
especially at high e. 

When  r(a) exceeds q ,  interfacial debonding arises. 
Taking  the case of q = 120 M P a  as an example,  inter- 
facial debonding occurs at D, C, B, E and A for (1) to 
(5) in Fig. 3, respectively. Once debonding occurs, the 
�9 (a) becomes equal to ~f. As a result, ~(a) varies along 
O F C G H  for (2). As the ~(a) reaches ~ at small strain 
e when 2all is large, debonding occurs at small e and 
the efficiency of stress transfer to fibres is reduced. This 
point  will be discussed in detail in 3.3 below. 

3.2. Tensile and shear stress d ist r ibut ions as 
a funct ion of distance from the fibre end 

Tensile stress distr ibution in fibres crf and shear stress 
distr ibution ~ at the interface for Ti = 300 M P a  were 
calculated as shown in Figs 4 and 5, respectively, and 
those for q = 120 M P a  in Figs 6 and 7, respectively. 
(a) and (b) in Figs 4 to 7 show the cases of 2a = 0 and 
200 pm, respectively. When  ~ = 300 MPa ,  there oc- 
curred no interracial debonding up to e = 2%, but 
when ~i was 120 MPa ,  there occurred debonding for 
e >  1.2% for 2 a = 0  and for e > 0 . 8 8 %  for 
2a = 200 pm. In the case of :i = 300 M P a  (Figs 4 
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Figure 5 Dis t r ibu t ion  of shear  stress at  interface, ~, as a function of 
dis tance from the fibre end, y, under  condi t ions  of l = 500 pm; 

~i = 300 M P a  and 2a = (a) 0 and  (b) 2a 200 gm. The curves (1) to (4) 
cor respond  to (1) to (4) in Fig. 4, respectively. 
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Figure 6 Dis t r ibu t ion  of stress in fibres, err, as a function of dis tance 
from the fibre end, y, at  var ious  s t ra in  levels, under  condi t ions  of (a) 
l = 500 gm; "q = 120 M P a ,  and  2a = (a) 0 and  (b) 2a 200 pm; l = (1) 

0.15; (2) 0.50; (3) 0.85; (4) 1.0; (5) 1.20. 

and 5), e = 0.15, 0.50, 1.0 and 1.5% for 2a = 0, corres- 
ponding to the stages a, b, d and d, respectively, and 
those for 2a = 200 lain to the stages b, b, d and d, 
respectively. In case of q = 120 M P a  (Figs 6 and 7), 



e = 0.15, 0.50, 0.85, 1.00 and 1.2% for 2a = 0, corres- 
ponding to the stages a, b, d, d and g, respectively, and 
those for 2a = 200 gm to the stages b, d, d, g and g, 
respectively. The y in Figs 4 to 7 shows the distance 
from the end of the fibres. 

From the geometry of the present model, the stress 
distribution in "1" fibres as a function of y was equal 
to that in "2" fibres, and also the stress distribution in 
fibres was symmetrical with respect to the centre of 
y =  1/2. The variation of "c(y) was equal to 
-~(1/2-y) due to the geometry of the present 

model, and also the r(y) was symmetrical with respect 
to y = ( l -  2a)/4 for 0 < y < l /2  - a and also with 
respect to y = ( 3 / + 2 a ) / 4  for l / 2 + a < y < I .  For 
I/2 - a < y < 1/2 + a, ~ was zero, as stated already. 
The following features can be seen from Figs 4 to 7. 

(i) At any strain, e, the stress cyf for 2a = 0 increases 
with increasing y, and reaches maximum at 
x = / /2 (250  gm in this example) and then decreases, 
while that for 2a = 200 pm increases and reaches max- 
imum at y = 1 / 2 -  a, remaining constant for 
1/2 - a < y < l /2  + a. 

(ii) The stress distribution for 2a = 0 is very acute 
near the centre of the length, but not for 2a = 200 gin. 
The highest stress in fibre at y = I /2  for 2a = 0 is 
higher than that for 2a = 200 pro. As the breakage of 
fibres occurs when the exerted stress exceeds their 
strength, the fibres for 2a = 0 tend to be broken in 
comparison with those for large values of 2a. 

(iii) When q is high (300 MPa), the fibre stress c~f 
except at y = 0 increases with increasing e, whereas 
when r is low (120 MPa), the cyf increases within the 
range of low e where interracial debonding does not 
occur, but decreases at high e due to interracial de- 
bonding. 

(iv) ~, except for the range of I /2  - a < y < 1/2 + a, 

increases with increasing e when q is high (300 MPa), 
while it increases but then decreases due to interfacial 
debonding, remaining constant ( =  zf) at high e when 
zi is low (120 MPa). 

3.3. Average stress of fibres as a function 
of applied strain to composites 

Figs 8 and 9 show variations of ~r as a function of e for 
~i = 300 and 120 MPa,  respectively. The following 
features can be seen from Figs 8 and 9. 

(i) In the case of high q, the 6r increases with 
increasing e, while for low q, it increases within the 
range of low e where debonding does not arise, but 
then decreases due to interfacial debonding. The de- 
bonding, which occurs at first at x = a ( y  = 0), 

propagates quickly and the ~f is reduced quickly with 
increasing e, resulting in a quick loss in the stress- 
carrying capacity of the fibres. 

(ii) The increase in ~rf for Ti = 300 MPa  with in- 
creasing e is dependent on the values of l, 2a and e. The 
influence of I on ~yf is simple: the larger the l, the higher 
the ~f. The influence of 2a on  6r is complex. Compar-  
ing (1) with (2) in Fig. 8, for instance, the 6f of (2) is 
higher than that of(l)  :For 0 < e < 0.8% and 1.2% < e, 
but not for 0.8% < e < 1.2%. 

(iii) In the case of low q (120 MPa), debonding 
arises at lower e for larger 2a, as the T(a) reaches q at 
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Figure 7 Distribution of shear stress at interface, z, as a function of 
distance from the fibre end, y, under a condition of (a) l = 500 gin; 
z i - 120 M P a  and 2a = (a) 0 and (b) 200 gin. The curves (1) to (5) 
correspond to (1) to (5) in Fig. 6, respectively. 
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Figure 8 Variation of average fibre stress, (~r, as a function of strain 
of composite, e, for various values of 1 and 2a under a condition of 
q = 300 MPa.  I = (1)-(3) 500; (4)-(5) 250 pro. 2a = (1) 0; (2) 200; (3) 
400; (4) 0; (5) 200 lam. 

lower e, as shown in Fig. 3. Thus the larger the 2a, the 
earlier the reduction in 6-f when ~i is low. The max- 
imum value of ~f increases with increasing I and with 
decreasing 2a. 

(iv) Once interfacial debonding has occurred in the 
whole range of y, only ~f acts to transfer stress to 
fibres. In such a case, the 6r remains constant, being 
independent of e. The 6-f after debonding decreases 
with decreasing 1 and increasing 2a. 

It should be noted that when q is high, an appropri- 
ate selection of 2a can produce high composite 
strength for the following reasons. Taking the case of 
l = 500 lain and e = 1% in Fig. 8 as an example, (i) the 
6f of (1) and (2) is higher than that of (3), but (ii) the 6f 
is not so much different between (1) and (2). Too large 
2a results in low efficiency of stress-transfer (i), and 
high efficiency of stress-transfer to fibres can be 
achieved when 2a is not too large (ii). Recalling the 
stress distribution in fibres in Fig. 4, the stress near the 
centre of the length is acute and very high when 

2759 



I T r 

2f__ 
1 

/~, (3) 

0.0 0.5 

i 

-(4)---" 

I "r 
1.0 

e (%) 
1.5 2 .0  

Figure 9 Variation of average fibre stress, 6f, as a function of strain 
of composite, e, for various values o f / a n d  2a, which are the same as 
those employed for the calculation of Fig. 8, under conditions of 
zg = 120 MPa. l = (1) (3) 500; (4)-(5) 250 gin. 2a = (1) 0; (2) 200; (3) 
400; (4) 0; (5) 200 gm. 

2a = 0, but not when 2a = 200 gm. This indicates that 
the breakage of fibres is likely to occur for 2a = 0 in 
comparison with that for 2a = 200 lain, while the aver- 
age fibre stress is not very different. For instance, 
taking the strength of fibres to be 4 GPa,  the fibres are 
broken at e =  1% when 2 a = 0 ,  but not when 
2a = 200 lam. On the other hand, the results for the 
low zi shown in Fig. 9 indicate that the 2a should be 
small in order to achieve high composite strength if 
the debonding occurs before the stress at y = 1/2 ex- 
ceeds the strength of the fibres. 

4. C o n c l u s i o n s  
The tensile stress distribution in fibres and shear-stress 
distribution at the interface along the fibre axis, and 
the average stress carried by the fibres as a function of 
applied strain in discontinuous fibre-reinforced metal 
matrix composites, were calculated based on shear-lag 
analysis using a two-dimensional model with a simple 
geometry. The influences of fibre length, interfacial 
bonding strength, distance between fibre ends, and 
strain applied to composites, on the stress distribu- 
tions and average stress of fibres, were shown from the 
results of the calculation. 
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